1. (13 points) Phineas starts walking at a constant rate on a straight line in the coordinate plane (i.e. he exhibits uniform linear motion). At time $t=0$ seconds, Phineas is at the point $(-1,-3)$. At time $t=10$ seconds, he is at the point $(4,7)$.
(a) (5 pts) Find the parametric equations for the x and y coordinates of Phineas' location at

$$
\left.\begin{array}{l}
\text { time. } x=a+b t, y=c+d t \\
\left.\begin{array}{l}
t=0, x=-1 \Rightarrow-1=a+b(10) \Rightarrow a=-1 \\
t=10, x=4 \Rightarrow 4=-1+b(10) \Rightarrow d=5 / 10=1 / 2
\end{array}\right\} x=-1+\frac{1}{2} t \\
t=0, y=-3 \Rightarrow-3=c+d(0) \Rightarrow c=-3 \\
t=10, y=7 \Rightarrow 7=-3+d(10) \Rightarrow d=1
\end{array}\right\} y=-3+t
$$

(b) (8 pts) Ferb is standing still in the coordinate plane at the point $(-1,5)$. At what time, t, is Phineas closest to Ferb?

$$
\begin{aligned}
& l_{1}: m=\frac{7--3}{4--1}=\frac{10}{5}=2 \\
& y=2(x--1)+-3 \\
& y=2 x+2-3 \\
& y=2 x-1) \\
& l_{2}: m=-\frac{1}{2}, \quad y=-\frac{1}{2}(x--1)+5 \\
& y=-\frac{1}{2} x-\frac{1}{2}+5=-\frac{1}{2} x+\frac{9}{2}=-0.5 x+4.5 \\
& 2 x-1=-\frac{1}{2} x+\frac{9}{2} \\
& \begin{aligned}
\frac{5}{2} x & =\frac{11}{2} \\
x=\frac{11}{5} & =2.2
\end{aligned} \\
& \text { INTERSECT: } \begin{array}{r}
\frac{11}{5}=-1+\frac{1}{2} t \\
\frac{16}{5}=\frac{1}{2} t \\
t=\frac{32}{5}=6.4 \text { seconds }
\end{array} \\
& \text { TIME: } x=\frac{11}{5} \Rightarrow 2 x-1=\frac{22}{5}-1=\frac{17}{5}=3 .
\end{aligned}
$$

7. Chloë and and Joë are walking around the coördinate plane. They both begin walking at the same time, in straight lines at constant speeds.
(a) [3 points] Chloë starts at $(-2,-3)$ and walks east at a speed of 4 units per second.

Give parametric equations for Chloë's coördinates after t seconds.

$$
\begin{aligned}
& x=-2+4 t \\
& y=-3
\end{aligned}
$$

(b) [4 points] Joë begins at the point $(6,3)$ and walks towards the point $(14,-5)$, reaching it in 4 seconds.

Give parametric equations for Joë's coördinates after t seconds.

$$
\begin{array}{ll}
x_{0}=6 & y_{0}=3 \\
x_{1}=14 & y_{1}=-5 \\
\Delta x=8 & \Delta y=-8 \\
\Delta t=4 & x=6+2 t \\
x=6+\frac{8}{4} t & y=3-2 t \\
y=3+\frac{-8}{4} t & y
\end{array}
$$

(c) [5 points] When are Chloë and Joë closest together?

$$
\begin{aligned}
d i s t & =\sqrt{((-2+4 t)-(6+2 t))^{2}+(-3-(3-2 t))^{2}} \\
& =\sqrt{(-8+2 t)^{2}+(-6+2 t)^{2}} \\
& =\sqrt{64-32 t+4 t^{2}+36-24 t+4 t^{2}} \\
& =\sqrt{8 t^{2}-56 t+100} \text { quadratic! }
\end{aligned}
$$

